E-1,2-Diarylsulfonylethene—Source for New Class of Heterocycles

Adivireddy Padmaja,* Thalari Payani, Akkarapalli Muralikrishna, and Konda Mahesh

Department of Chemistry, Sri Venkateswara University, Tirupati 517502, India *E-mail: adivireddyp@yahoo.co.in Received January 29, 2010 DOI 10.1002/jhet.500 Published online 30 August 2010 in Wiley Online Library (wileyonlinelibrary.com).

A new class of pyrazolidinediones, isoxazolidinediones, pyrimidinetriones, and thioxopyrimidinediones were synthesized by the reaction of Michael adduct, dimethyl 2-(1',2'-diarylsulfonyl)ethylmalonate with different nucleophiles, hydrazine hydrate, hydroxylamine hydrochloride, and urea derivatives.

J. Heterocyclic Chem., 48, 199 (2011).

INTRODUCTION

 α , β -Unsaturated sulfur compounds have been used as important reagents in synthetic organic chemistry [1]. For example, vinyl sulfides as carbonyl synthons [2] and vinyl sulfonium salts as precursors of cyclopropanes [3]. Moreover, these are valuable intermediates in a variety of synthetic transformations and useful as building blocks in the synthesis of biologically potent heterocycles [4]. The biological properties of pyrazoles, isoxazoles, pyrimidines, thioxopyrimidines, and their derivatives have been reviewed extensively [5-16]. In our continued interest on the Michael addition reactions [17–20], we have examined the reactivity of α , β -unsaturated sulfones towards the synthesis of bioactive heterocycles. Based on these, herein we wish to report a new class of pyrazolidinediones, isoxazolidinediones, pyrimidinetriones, and thioxopyrimidinediones from the Michael acceptor, E-1,2-diarylsulfonylethene.

RESULTS AND DISCUSSION

The Michael addition of dimethyl malonate in the presence of anhydrous potassium carbonate in methyl ethyl ketone to E-1,2-diarylsulfonylethene (1) produced the Michael adduct, dimethyl 2-(1',2'-diarylsulfonyl-ethyl)malonate (2) (Scheme 1 and Table 1). The IR

spectra of compounds 2 displayed absorption bands in the region 1120–1130 and 1338–1341 (SO₂), 1730–1735 cm^{-1} (CO₂Me) (Table 2). The ¹H NMR spectrum of **2a** showed two double doublets at δ 3.47, 3.56 (C₂-H), a doublet at 4.05 (C₂-H), and a multiplet at 4.22-4.28 (C'_1-H) . In addition, two singlets were observed at 3.61, 3.69 ppm due to methoxy protons of carbomethoxy group. The downfield shift was assigned to the one present towards arylsulfonyl moiety. This may be due to the deshielding effect exerted by this group (Table 3). The ¹³C NMR spectrum of **2a** exhibited signals at δ 39.7 (C-1'), 52.8, 53.6 (OCH₃), 60.4 (C-2), 54.9 (C-2'), 168.2, 168.9 (CO_2Me) (Table 3). The cyclocondensation of 2 with hydrazine hydrate and hydroxylamine hydrochloride furnished 4-(1',2'-diarylsulfonylethyl)pyrazolidine-3,5-dione (3) and 4-(1',2'-diarylsulfonylethyl)isoxazolidine-3,5-dione (4), respectively. Similar reaction of 2with urea, N,N'-dimethylurea and thiourea afforded 5-(1',2'-diarylsulfonylethyl)pyrimidine-2,4,6-trione (5), 5-(1',2'-diarylsulfonylethyl)-1,3-dimethylpyrimidine-2,4,6trione (6), and $5 \cdot (1', 2' - \text{diarylsulfonylethyl}) - 2 \cdot \text{thioxopyr}$ imidine-4,6-dione (7), respectively (Scheme 1 and Table 1). The absence of a band due to ester moiety in the IR spectra of the compounds 3-7 and the presence of absorption bands in the regions 1655–1680 (CO-N), 1115-1140 and 1330-1345 cm⁻¹ (SO₂) indicated their formation. All the compounds except 6 also displayed

an absorption band at 3306–3331 cm⁻¹ due to NH. Further, the compound **4** showed a band at 1736–1748 (CO–O), whereas **7** exhibited a band at 1488–1497 cm⁻¹ (C=S) (Table 2). The ¹H NMR spectra of **3a** and **4a** showed two double doublets at δ 3.12, 3.85 and 3.14, 3.78 (C₂'–H), a multiplet at 4.34–4.42, 4.31–4.38 (C₁'–H), and a doublet at 4.49, 4.48 (C₄–H) ppm besides signals of aromatic protons. Apart from these, a

broad singlet was observed at δ 9.11 in **3a** and at 10.10 ppm in **4a** due to NH which disappeared on deuteration (Table 3). The ¹³C NMR spectrum of **3a** displayed signals at δ 51.6 (C-2'), 55.4 (C-1'), 63.1 (C-4), 171.6 (C-3 and C-5), whereas **4a** at 50.7 (C-2'), 55.1 (C-1'), 62.9 (C-4), 172.6 (C-3), 178.7 ppm (C-5) in addition to signals of aromatic carbons (Table 3). The ¹H NMR spectra of **5a**, **6a** and **7a** also exhibited two double doublets

Compound	M_p (°C)			Molecular Formula	Analysis % Calcd./Found		
		Yield (%)	Ar		С	Н	Ν
2a	105-107	75	C_6H_5	$C_{19}H_{20}O_8S_2$	51. 81	4. 58	-
				(440.49)	51.90	4.55	
2b	154-156	71	P-CH ₃ C ₆ H ₄	$C_{21}H_{24}O_8S_2$	53.83	5.16	-
				(468.54)	53.88	5.18	
2c	185–187	78	P-ClC ₆ H ₄	$C_{19}H_{18}Cl_2O_8S_2$	44.80	3.56	-
2	100 000	7.4	C H	(509.38)	44.75	3.60	6.06
3a	198–200	/4	C_6H_5	$C_{17}H_{16}N_2O_6S_2$	49.99	3.95	6.86
21	207 200	74		(408.45)	49.94	3.93	6.92
30	207-209	/6	P-CH ₃ C ₆ H ₄	$C_{19}H_{20}N_2U_6S_2$	52.28	4.62	6.42
2	222 224	70	D CIC II	(436.50)	52.52	4.00	0.45
3c	222-224	79	P-CIC ₆ H ₄	$C_{17}H_{14}Cl_2N_2O_6S_2$	42.78	2.96	5.87
4	100 104	00	C II	(4/7.34)	42.72	2.95	5.92
4a	182-184	80	C_6H_5	$C_{17}H_{15}NO_7S_2$	49.87	3.69	3.42
45	106 109	72		(409.43) C H NO S	49.93	3.72	3.48 2.20
40	190–198	75	$r - C \Pi_3 C_6 \Pi_4$	(427,40)	52.10	4.50	5.20 2.25
40	217 210	77	P CIC H	(+37.+9)	12.20	4.42	2.03
70	217-219	//	1-CIC6114	(478 32)	42.09	2.74	2.95
5a	210-212	73	CeHe	CueHucNaOzSa	49 53	3.69	6.42
cu	210 212	15	0,6115	(436 46)	49 51	3.71	6.51
5h	221-223	70	P-CH ₂ C ₄ H ₄	CaoHaoNaOzSa	51.71	4.34	6.03
•••		, 0	1 011300114	(464.51)	51.77	4.38	6.10
5c	230-232	67	P-ClC ₆ H ₄	C18H14Cl2N2O7S2	42.78	2.79	5.54
				(505.35)	42.86	2.73	5.58
6a	216-218	65	C ₆ H ₅	$C_{20}H_{20}N_2O_7S_2$	51.71	4.34	6.03
			0.5	(464.51)	51.76	4.39	6.09
6b	226-228	68	$P-CH_3C_6H_4$	$C_{22}H_{24}N_2O_7S_2$	53.64	4.91	5.69
			5 0 1	(492.57)	53.71	4.96	5.66
6c	205-207	70	$P-ClC_6H_4$	$C_{20}H_{18}Cl_2N_2O_7S_2$	45.03	3.40	5.25
				(533.40)	45.00	3.45	5.32
7a	128-130	73	C_6H_5	$C_{18}H_{16}N_2O_6S_3$	47.77	3.56	6.19
				(452.52)	47.82	3.53	6.24
7b	142-144	71	P-CH ₃ C ₆ H ₄	$C_{20}H_{20}N_2O_6S_3$	49.98	4.19	5.83
				(480.58)	50.05	4.18	5.87
7c	150-152	75	$P-ClC_6H_4$	$C_{18}H_{14}Cl_2N_2O_6S_3\\$	41.46	2.71	5.37
				(521.41)	41.49	2.73	5.43

 Table 1

 Physical and analytical data of compounds 2–7.

Table 2IR data of compounds 2–7.

	IR (KBr) cm ⁻¹						
Compound	S	O ₂	C=S	N-C=O	CO ₂ Me	0—СО	NH
2a	1126	1341	_	_	1733	_	_
2b	1130	1338	-	_	1735	_	_
2c	1121	1339	-	-	1731	-	_
3a	1119	1340	-	1676	-	_	3327
3b	1122	1330	-	1668	-	_	3325
3c	1126	1332	-	1672	-	-	3319
4a	1136	1336	-	1678	-	1736	3327
4b	1129	1337	-	1664	_	1742	3319
4c	1130	1331	-	1655	-	1748	3322
5a	1134	1333	-	1661	-	-	3306
5b	1131	1339	-	1667	-	-	3310
5c	1128	1336	-	1671	_	_	3312
6a	1125	1334	-	1674	-	-	_
6b	1126	1341	-	1668	-	-	_
6c	1131	1339	_	1662	_	_	_
7a	1135	1336	1488	1673	-	-	3327
7b	1129	1332	1492	1679	_	-	3331
7c	1127	1335	1497	1670	_	_	3324

202

	1	Table 3		
$^{1}\mathrm{H}$ and	¹³ C NMR	data of	compounds	2–7.

Compound	¹ H NMR (CDCl ₃ /DMSO- <i>d</i> ₆) δ, (ppm)	¹³ C NMR (CDCl ₃ /DMSO- <i>d</i> ₆) δ, (ppm)
2a	3.47 (dd, 1H, C' ₂ —H, $J = 9.0$, 14.6 Hz), 3.56 (dd, 1H, C' ₂ —H, $J = 4.4$, 14.8 Hz), 3.61 (s, 3H, OCH ₃), 3.69 (s, 3H, OCH ₃), 4.05 (d, 1H, C ₂ —H, $J = 8.4$ Hz), 4.22– A_{28} (m, 1H, C' ₂ —H), 718–750 (m, 10H, 4r, H)	39.7 (C-1'), 52.8 and 53.6 (OCH ₃), 54.9 (C-2'), 60.4 (C-2), 168.2 and 168.9 (CO ₂ Me), 128.2, 129.2, 130.4, 132.6, 133.2, 133.8, 135.4 (aromatic carbons)
2b	2.36 (s, 6H, Ar-CH ₃), 3.46 (dd, 1H, C ₂ ⁻ -H, $J = 8.8$, 14.2 Hz), 3.58 (dd, 1H, C ₂ ['] -H, $J = 4.4$, 14.4 Hz), 3.64 (s, 3H, OCH ₃), 3.66 (s, 3H, OCH ₃), 4.09 (d, 1H, C ₂ ⁻ -H, $J = 8.6$ Hz), 4.26-4.32 (m, 1H, C ₁ ['] -H), 7.23-7.76 (m, 8H, Ar-H)	22.5 (Ar-CH ₃), 39.2 (C-1'), 53.2 and 53.9 (OCH ₃), 54.8 (C-2'), 60.7 (C-2), 167.9 and 168.7 (CO ₂ Me), 127.8, 129.6, 130.1, 131.5, 133.7, 134.2, 135.9, 136.1 (aromatic carbons)
2c	3.49 (dd, 1H, C' ₂ —H, $J = 9.1$, 14.7 Hz), 3.58 (dd, 1H, C' ₂ —H, $J = 4.6$, 14.9 Hz), 3.65 (s, 3H, OCH ₃), 3.72 (s, 3H, OCH ₃), 4.08 (d, 1H, C ₂ —H, $J = 8.6$ Hz), 4.30–	39.6 (C-1'), 53.0 and 53.1 (OCH ₃), 54.9 (C-2'), 59.7 (C-2), 166.5 and 167.1 (CO ₂ Me), 125.2, 128.7, 129.4, 131.6, 133.8, 134.9, 136.0, 138.5 (aromatic
3a	4.38 (m, 1H, C'_H), 7.32–7.56 (m, 8H, Ar-H) 3.12 (dd, 1H, C'_H, $J = 3.2$, 15.0 Hz), 3.85 (dd, 1H, C'_H, $J = 9.7$, 14.9 Hz), 4.34–4.42 (m, 1H, C'_H), 4.49 (d, 1H, C ₄ –H, $J = 13.9$ Hz), 7.12–7.75 (m, 10H, Ar-H), 9.11 (bs. 2H, NH)	carbons) 51.6 (C-2'), 55.4 (C-1'), 63.1 (C-4), 171.6 (C-3 and C- 5), 129.6, 130.5, 131.1, 132.0, 133.3, 133.7, 135.3, 136.8 (aromatic carbons)
3b	2.32 (s, 6H, Ar-CH ₃), 3.14 (dd, 1H, C ₂ '-H, $J = 3.1$, 14.8 Hz), 3.82 (dd, 1H, C ₂ '-H, $J = 9.2$, 14.6 Hz), 4.32–4.38 (m, 1H, C ₁ '-H), 4.46 (d, 1H, C ₄ -H, $J = 13.7$ Hz), 7.21–7.81 (m, 8H, Ar-H), 9.08 (bs, 2H, NH)	21.9 (Ar-CH ₃), 51.2 (C-2'), 55.8 (C-1'), 62.7 (C-4), 172.3 (C-3 and C-5), 128.4, 129.9, 130.7, 131.6, 132.9, 133.2, 134.9, 135.7, 136.4 (aromatic carbons)
3c	3.16 (dd, 1H, C ₂ '-H, $J = 6.3$, 16.2 Hz), 3.80 (dd, 1H, C ₂ '-H, $J = 8.4$, 16.0 Hz), 4.35-4.41 (m, 1H, C ₁ '-H), 4.45 (d, 1H, C ₄ -H, $J = 13.9$ Hz), 7.16–7.39 (m, 8H, Ar-H), 9.14 (bs, 2H, NH)	51.8 (C-2'), 56.2 (C-1'), 59.6 (C-4), 171.0 (C-3 and C- 5) 125.7 128.9, 129.2, 131.9, 133.6, 134.3, 135.8, 137.5, (aromatic carbons)
4a	3.14 (dd, 1H, C ₂ '-H, $J = 3.5$, 15.1 Hz), 3.78 (dd, 1H, C ₂ '-H, $J = 9.7$, 14.9 Hz), 4.31-4.38 (m, 1H, C ₁ '-H), 4.48 (d, 1H, C ₄ -H, $J = 13.9$ Hz), 7.07-7.84 (m, 10H, Ar-H), 10.10 (bs, 1H, NH)	50.7 (C-2'), 55.1 (C-1'), 62.9 (C-4), 172.6 (C-3), 178.7 (C-5), 129.6, 130.2, 131.5, 132.4, 132.9, 134.6, 136.1, 137.4 (aromatic carbons)
4b	2.38 (s, 6H, Ar-CH ₃), 3.16 (dd, 1H, C' ₂ —H, $J = 3.4$, 15.0 Hz), 3.87 (dd, 1H, C' ₂ —H, $J = 9.5$, 14.8 Hz), 4.36–4.42 (m, 1H, C' ₁ —H), 4.50 (d, 1H, C ₄ —H, $J = 13.7$ Hz), 7.10–7.98 (m, 8H, Ar-H) 10.19 (bs. 1H, NH)	22.6 (Ar-CH ₃), 51.2 (C-2'), 55.9 (C-1'), 63.5 (C-4), 173.4 (C-3), 179.2 (C-5), 129.2, 130.7, 131.3, 132.9, 133.5, 134.9, 135.7, 136.8 (aromatic carbons)
4c	3.05 (dd, 1H, C'_2-H, $J = 3.3$, 14.9 Hz), 3.70 (dd, 1H, C'_2-H, $J = 9.3$, 14.7 Hz), 4.33–4.39 (m, 1H, C'_1-H), 4.46 (d, 1H, C_4-H, $J = 13.8$ Hz), 7.16–7.36 (m, 8H, A.T. H), 0.08 (bc, 1H, NH)	50.9 (C-2'), 56.2 (C-1'), 63.1 (C-4), 172.9 (C-3), 178.6 (C-5), 129.7, 130.4, 131.9, 132.6, 133.7, 134.2, 136.7, 138.9 (aromatic carbons)
5a	A1-H), 9.08 (08, HI, IM) 3.09 (dd, 1H, C'_2-H, $J = 3.6, 15.0$ Hz), 3.75 (dd, 1H, C'_2-H, $J = 9.7, 14.8$ Hz), 4.34–4.41 (m, 1H, C'_1-H), 4.49 (d, 1H, C_5-H, $J = 13.6$ Hz), 6.99–7.39 (m, 10H, Ar-H), 9.91 (bs. 2H, NH)	50.1 (C-2'), 57.3 (C-1'), 62.7 (C-5), 158.1 (C-2), 165.3 (C-4 and C-6), 127.3, 129.2, 130.7, 132.1, 132.8, 133.7, 134.6, 135.8 (aromatic carbons)
5b	2.34 (s, 6H, Ar-CH ₃), 3.04 (dd, 1H, C ₂ ⁻ -H, J = 3.5, 14.9 Hz), 3.71 (dd, 1H, C ₂ ⁻ -H, J = 9.5, 14.7 Hz), 4.37–4.44 (m, 1H, C ₁ ⁻ -H), 4.51 (d, 1H, C ₅ ⁻ -H, J = 13.5 Hz), 7 19–7 69 (m, 8H, Ar-H), 9.99 (bs. 2H, NH)	21.7 (Ar-CH ₃), 50.4 (C-2'), 57.6 (C-1'), 62.3 (C-5), 157.8 (C-2), 166.1 (C-4 and C-6), 128.5, 129.6, 130.3, 131.8, 132.3, 133.4, 135.7, 136.6 (aromatic carbons)
5c	3.07 (dd, 1H, C' ₂ —H, $J = 3.7$, 15.0 Hz), 3.74 (dd, 1H, C' ₂ —H, $J = 9.7$, 14.9 Hz), 4.25–4.36 (m, 1H, C' ₁ —H), 4.62 (d, 1H, C ₅ —H, $J = 13.6$ Hz), 7.18–7.59 (m, 8H, Ar-H), 9.89 (bs. 2H, NH)	50.3 (C-2'), 60.1 (C-1'), 64.1 (C-5), 158.3 (C-2), 166.5 (C-4 and C-6), 125.8 128.4, 129.0, 129.8, 132.3, 133.3, 133.9, 135.1, (aromatic carbons)
ба	2.78 (s, 6H, N–CH ₃), 3.09 (dd, 1H, C ['] ₂ –H, J = 3.8, 14.9 Hz), 3.72 (dd, 1H, C ['] ₂ –H, J = 9.5, 14.7 Hz), 4.31–4.36 (m, 1H, C ['] ₁ –H), 4.47 (d, 1H, C ₅ –H, J = 13.9 Hz), 7.09–7.81 (m, 10H, Ar-H)	27.5 (N–CH ₃), 52.7 (C-2'), 57.9 (C-1'), 64.4 (C-5), 157.1 (C-2), 167.9 (C-4 and C-6), 129.3, 130.6, 131.2, 132.4, 132.8, 133.6, 134.5, 135.2 (aromatic carbons)
6b	2.25 (s, 6H, Ar–CH ₃), 2.71 (s, 6H, N–CH ₃), 3.03 (dd, 1H, C ₂ –H, $J = 3.6$, 14.8 Hz), 3.70 (dd, 1H, C ₂ –H, $J = 9.3$, 14.6 Hz), 4.29–4.35 (m, 1H, C ₁ –H), 4.43 (d, 1H, C ₂ –H, $I = 13.6$ Hz), 7.11–7.74 (m, 8H, Ar-H)	22.3 (Ar-CH ₃), 27.9 (N–CH ₃), 51.9 (C-2'), 58.2 (C- 1'), 63.9 (C-5), 156.7 (C-2), 168.7 (C-4 and C-6), 128.8, 130.3, 131.9, 132.6, 132.9, 133.0, 133.7, 134.9 (aromatic carbons)
6с	2.75 (s, 6H, N–CH ₃), 3.06 (dd, 1H, C ₂ –H, J = 3.7, 14.9 Hz), 3.73 (dd, 1H, C ₂ –H, J = 9.4, 14.7 Hz), 4.32–4.38 (m, 1H, C ₁ –H), 4.46 (d, 1H, C ₅ –H, J = 13.7 Hz), 7.12–7.40 (m, 8H, Ar-H)	27.4 (N–CH ₃), 51.2 (C-2'), 58.9 (C-1'), 63.3 (C-5), 157.3 (C-2), 167.7 (C-4 and C-6), 129.2, 130.9, 131.4, 132.2, 132.7, 133.4, 134.9, 136.2 (aromatic carbons)

(continued)

Compound	¹ H NMR (CDCl ₃ /DMSO- d_6) δ , (ppm)	¹³ C NMR (CDCl ₃ /DMSO- d_6) δ , (ppm)
7a	3.10 (dd, 1H, C ₂ —H, $J = 3.9$, 15.1 Hz), 3.78 (dd, 1H, C ₂ —H, $J = 9.6$, 15.0 Hz), 4.33–4.37 (m, 1H, C ₁ —H), 4.49 (d, 1H, C ₅ —H, $J = 13.9$ Hz), 7.12–7.78 (m, 10H, Ar-H), 9.38 (bs, 2H, NH)	52.9 (C-2'), 59.4 (C-1'), 64.2 (C-5), 167.4 (C-4 and C-6), 171.3 (C-2), 128.2, 129.2, 130.6, 131.4, 132.0, 133.2, 134.5, 135.7 (aromatic carbons)
7b	2.27 (s, 6H, Ar-CH ₃), 3.08 (dd, 1H, C ₂ '-H, $J = 3.8$, 15.0 Hz), 3.75 (dd, 1H, C ₂ '-H, $J = 9.5$, 14.9 Hz), 4.31-4.35 (m, 1H, C ₁ '-H), 4.46 (d, 1H, C ₅ -H, $J = 13.6$ Hz), 7.17-7.82 (m, 8H, Ar-H), 9.31 (bs, 2H, NH)	22.7 (Ar-CH ₃), 51.7 (C-2'), 58.8 (C-1'), 64.9 (C-5), 166.9 (C-4 and C-6), 172.5 (C-2), 128.9, 129.4, 131.3, 132.9, 133.4, 134.6, 135.0, 135.8 (aromatic carbons)
7c	3.11 (dd, 1H, C'_H, $J = 3.9$, 15.1 Hz), 3.79 (dd, 1H, C'_H, $J = 9.7$, 15.0 Hz), 4.29–4.36 (m, 1H, C'_H), 4.47 (d, 1H, C_5-H, $J = 13.8$ Hz), 7.14–7.93 (m, 8H, Ar-H), 9.36 (bs, 2H, NH)	51.1 (C-2 [']), 58.2 (C-1 [']), 64.4 (C-5), 167.3 (C-4 and C- 6), 171.9 (C-2), 129.6, 130.4, 131.7, 132.4, 133.7, 134.9, 135.6, 136.6 (aromatic carbons)

Table 3(Continued)

at δ 3.09, 3.75; 3.09, 3.72; 3.10, 3.78, a multiplet at 4.34–4.41, 4.31–4.36, 4.33–4.37, and a doublet at 4.49, 4.47, 4.49 which were accounted for C₂'–H, C₁'–H, C₅–H. The compounds **5a** and **7a** displayed a broad singlet at δ 9.91, 9.38 ppm for NH which disappeared on deuteration. Besides, compound **6a** showed a singlet at 2.78 ppm for N-Me group. The structures of the compounds **5–7** were further confirmed by ¹³C NMR spectra (Table 3).

CONCLUSIONS

A new class of pyrazolidinedione, isoxazolidinedione, pyrimidinetrione, and thioxopyrimidinedione were developed from the synthetic intermediate E-1,2-diary-lsulfonylethene adopting facile, simple, and well-versed synthetic methodologies.

EXPERIMENTAL

General. Melting points were determined in open capillaries on a Mel-Temp apparatus and are uncorrected. The purity of the compounds was checked by TLC (silica gel H, BDH, ethyl acetate/hexane, 1:3). The IR spectra were recorded on a Thermo Nicolet IR 200 FTIR spectrometer as KBr pellets and the wave numbers were given in cm⁻¹. The ¹H NMR spectra were recorded in CDCl₃/DMSO-d₆ on a Varian EM-360 spectrometer (300 MHz). The ¹³C NMR spectra were recorded in CDCl₃/DMSO-d₆ on a Varian VXR spectrometer operating at 75.5 MHz. All chemical shifts are reported in δ (ppm) using TMS as an internal standard. The microanalyses were performed on a Perkin-Elmer 240C elemental analyzer. The starting compound 1,2-diarylsulfonylethene (1) was prepared as per the literature procedure [20].

Dimethyl 2-(1',2'-diarylsulfonylethyl)malonate (2): General procedure. A mixture of dimethyl malonate (15 mmol), methyl ethyl ketone (5 mL), and anhydrous potassium carbonate (10 mmol) was cooled to 5–10°C. To this, compound 1 (10 mmol) was added and stirred for 2–4 h maintaining the same temperature. The contents of the flask were diluted with water and extracted with chloroform. The organic layer was

washed with water, brine and dried (anhyd. Na₂SO₄). The solvent was removed *in vacuo*. The resultant solid was recrystallized from 2-propanol.

4-(1',2'-Diarylsulfonylethyl)pyrazolidine-3,5-dione (3): General procedure. The compound 2 (1 mmol), hydrazine hydrate (1.5 mmol), MeOH (20 mL), and NaOMe (5 mL) were refluxed for 3–5 h. The solution was cooled and poured onto crushed ice containing conc. HCl. The solid obtained was filtered, dried, and recrystallized from methanol.

4-(1',2'-Diarylsulfonylethyl)isoxazolidine-3,5-dione (4): General procedure. To a solution of 2 (1 mmol) in MeOH (10 mL), hydroxylamine hydrochloride (1 mmol) and NaOMe (5 mL) were added and refluxed for 4–6 h. The reaction mixture was cooled and poured into ice-cold water containing conc. HCl. The solid separated was filtered, dried, and recrystallized from methanol.

5-(1',2'-Diarylsulfonylethyl)pyrimidine-2,4,6-trione (5)/5-(1',2'-diarylsulfonylethyl)-1,3-dimethylpyrimidine-2,4,6-trione (6): General procedure. A mixture of compound 2 (1 mmol), urea/N,N'-dimethylurea (1 mmol), MeOH (5 mL), and NaOMe (5 mL) was refluxed for 8–10 h. The contents were cooled and poured into ice-cold water containing conc. HCl. The separated solid was filtered, dried, and recrystallized from methanol.

5-(1',2'-Diarylsulfonylethyl)-2-thioxopyrimidine-4,6-dione (7): General procedure. To an equimolar mixture (1 mmol) of 2 and thiourea, MeOH (10 mL) and NaOMe (2 mL) were added and refluxed for 6–8 h. It was cooled and poured into ice-cold water containing conc. HCl. The solid separated was filtered, dried, and purified by recrystallization from methanol.

Acknowledgment. The authors are thankful to UGC, New Delhi for financial assistance under minor research project.

REFERENCES AND NOTES

- [1] Trost, B. M. Chem Rev 1978, 78, 363.
- [2] Seebach, D.; Kolb, M. Chem Ind (London) 1974, 687.
- [3] (a) Johnson, C. R.; Lockard, J. P. Tetrahedron Lett 1971,
- 12, 4589; (b) Takaki, K.; Agawa, T. J Org Chem 1977, 42, 3303.

[4] (a) Helder, R.; Doornbos, T.; Strating, J.; Zwanenburg, B. Tetrahedron 1973, 29, 1375; (b) Padmavathi, V.; Sumathi, R. P.; Padmaja, A.; Bhaskar Reddy, D. Indian J Chem 2001, 40B, 846; (c) Padmavathi, V.; Venugopal Reddy, K.; Balaiah, A.; Ramana Reddy,

T. V.; Bhaskar Reddy, D. Heteroatom Chem 2002, 13, 677; (d) Padmavathi, V.; Jagan Mohan Reddy, B.; Rajagopala Sarma, M.; Thriveni, P. J Chem Res (S) 2003, 79; (e) Padmavathi, V.; Rajagopala Sarma, M.; Padmaja, A.; Bhaskar Reddy, D. J Heterocycl Chem 2003, 40, 933.

[5] Bobranski, B.; Matczak, H. Roczniki Chem 1975, 49, 99.

[6] Doran, W. J. In Barbituric Acid Hypnotics; Blicke, F. F., Cox, R. H., Eds.; John Wiley and Sons: New York, 1959; Vol. 4, p 5.

[7] Zawisza, T.; Matczak, H.; Kowalczyk-Bronisz, S. H.; Jakobiec, T. Pol Arch Immunol Ther Exp 1981, 29, 235.

[8] Buchi, J.; Ammann, J.; Lieberherr, R.; Eichenberger, E. Helv Chim Acta 1953, 36, 75.

[9] Dante, N.; Elena, M.; Magistetti, M. J. Arzneim Forsch 1969, 19, 1721.

[10] Mimi, L. Q.; Christopheer, D. E.; Ann, Y. L.; Richard, S.

A.; Robert, M. K.; Lam, G.; Mathew, R. W.; Pancras, C. W.; Ruth, R. W. J Med Chem 1999, 42, 2760.

[11] Dannahardt, G.; Kiefer, W.; Kramer, G.; Maehrlein, S.; Nowe, U.; Fiebich, B. Eur J Med Chem 2000, 35, 499.

[12] Boarland, M. P. V.; McOmie, J. F. W.; Timms, R. N. J Chem Soc 1952, 4691.

[13] Kornet, M. J.; Thorstenson, J. H.; Lubawy, W. C. Pharm J Sci 1974, 63, 1090.

[14] Richon, A. B.; Maragoudakis, M. E.; Wasvary, J. S. J Med Chem 1982, 25, 745.

[15] Hisashi, S.; Syoji, O.; Masahiro, T.; Tsutomu, S.; Megumi, I.; Korekiyo, W.; Itsuo, U. J Med Chem 1998, 41, 1927.

[16] Nagai, A.; Matsushita, Y.; Ono, N.; Takechi, Y. Jpn. Kokai Tokkyo JP. 04173780, 1992; Chem Abstr 1992, 117, 212485.

[17] Padmavathi, V.; Venkatasubbaiah, D. R. C.; Balaiah, A.; Chandra obulareddy, B.; Padmaja, A. Indian J Chem 2005, 44B, 2569.

[18] Padmavathi, V.; Sudheer, K.; Padmaja, A. Indian J Chem 2008, 47B, 734.

[19] Padmaja, A.; Payani, T.; Dinneswara reddy, G.; Padmavathi, V. Eur J Med Chem 2009, 44, 4557.

[20] Bhaskar Reddy, D.; Chandrasekhar Babu, N.; Padmavathi, V.; Sumathi, R. P. Synthesis 1999, 491.